170 research outputs found

    Buckling instability causes inertial thrust for spherical swimmers at all scales

    Full text link
    Microswimmers, and among them aspirant microrobots, generally have to cope with flows where viscous forces are dominant, characterized by a low Reynolds number (ReRe). This implies constraints on the possible sequences of body motion, which have to be nonreciprocal. Furthermore, the presence of a strong drag limits the range of resulting velocities. Here, we propose a swimming mechanism, which uses the buckling instability triggered by pressure waves to propel a spherical, hollow shell. With a macroscopic experimental model, we show that a net displacement is produced at all ReRe regimes. An optimal displacement caused by non-trivial history effects is reached at intermediate ReRe. We show that, due to the fast activation induced by the instability, this regime is reachable by microscopic shells. The rapid dynamics would also allow high frequency excitation with standard traveling ultrasonic waves. Scale considerations predict a swimming velocity of order 1 cm/s for a remote-controlled microrobot, a suitable value for biological applications such as drug delivery.Comment: To appear in Phys. Rev. Lett See demonstration movie on https://www.youtube.com/watch?v=cEXMsFwEqs

    Birth and growth of cavitation bubbles within water under tension confined in a simple synthetic tree

    Full text link
    Water under tension, as can be found in several systems including tree vessels, is metastable. Cavitation can spontaneously occur, nucleating a bubble. We investigate the dynamics of spon- taneous or triggered cavitation inside water filled microcavities of a hydrogel. Results show that a stable bubble is created in only a microsecond timescale, after transient oscillations. Then, a diffusion driven expansion leads to filling of the cavity. Analysis reveals that the nucleation of a bubble releases a tension of several tens of MPa, and a simple model captures the different time scales of the expansion process

    Propulsion of bubble-based acoustic microswimmers

    Get PDF
    Acoustic microswimmers present a great potential for microfluidic applications and targeted drug delivery. Here, we introduce armored microbubbles (size range, 10–20 μm) made by three-dimensional microfabrication, which allows the bubbles to last for hours even under forced oscillations. The acoustic resonance of the armored microbubbles is found to be dictated by capillary forces and not by gas volume, and its measurements agree with a theoretical calculation. We further measure experimentally and predict theoretically the net propulsive flow generated by the bubble vibration. This flow, due to steady streaming in the fluid, can reach 100 mm/s, and is affected by the presence of nearby walls. Finally, microswimmers in motion are shown, either as spinning devices or free swimmers.P. M. acknowledges financial support from the European Community’s Seventh Framework Programme (FP7/2007-2013) ERC Grant Agreement Bubbleboost No. 614655. This work has been performed with the help of the “Plateforme Technologique Amont” de Grenoble, with the financial support of the “Nanosciences aux limites de la Nanoélectronique” Foundation. Support from the EPSRC (T. A. S.) and from a Marie Curie Grant (E. L.) is also gratefully acknowledged.This is the author accepted manuscript. The final version is available from American Physical Society via http://dx.doi.org/10.1103/PhysRevApplied.4.06401

    An elastic, plastic, viscous model for slow shear of a liquid foam

    Full text link
    We suggest a scalar model for deformation and flow of an amorphous material such as a foam or an emulsion. To describe elastic, plastic and viscous behaviours, we use three scalar variables: elastic deformation, plastic deformation rate and total deformation rate; and three material specific parameters: shear modulus, yield deformation and viscosity. We obtain equations valid for different types of deformations and flows slower than the relaxation rate towards mechanical equilibrium. In particular, they are valid both in transient or steady flow regimes, even at large elastic deformation. We discuss why viscosity can be relevant even in this slow shear (often called "quasi-static") limit. Predictions of the storage and loss moduli agree with the experimental literature, and explain with simple arguments the non-linear large amplitude trends

    Generic flow profiles induced by a beating cilium

    Full text link
    We describe a multipole expansion for the low Reynolds number fluid flows generated by a localized source embedded in a plane with a no-slip boundary condition. It contains 3 independent terms that fall quadratically with the distance and 6 terms that fall with the third power. Within this framework we discuss the flows induced by a beating cilium described in different ways: a small particle circling on an elliptical trajectory, a thin rod and a general ciliary beating pattern. We identify the flow modes present based on the symmetry properties of the ciliary beat.Comment: 12 pages, 6 figures, to appear in EPJ

    Discrete element modelling of the packing of spheres and its application to the structure of porous metals made by infiltration of packed beds of NaCl beads

    Get PDF
    A numerical model, using the discrete element method, has been developed to quantify specific parameters that are pertinent to the packing behaviour of relatively large, spherical NaCl beads and mixtures of beads of different sizes. These parameters have been compared with porosity and connectivity measurements made on porous aluminium castings made by molten metal infiltration into packed beds of such beads, after removal of the NaCl by dissolution. DEM has been found to accurately predict the packing fraction for salt beads with both mono and binary size distributions and from this the pore fractions in castings made by infiltration into packed beds of beads could be predicted. Through simple development of the condition for contacting of neighbouring beads, the number of windows linking neighbouring pores, and their size, could also be predicted across a wide range of small bead additions. The model also enables an insight into the mixing quality and changes in connectivity introduced through the addition of small beads. This work presents significant progress towards the delivery of a simulation based approach to designing preform architectures in order to tailor the resulting porous structures to best suit specific applications

    Mechanical model of the ultra-fast underwater trap of Utricularia

    Full text link
    The underwater traps of the carnivorous plants of the Utricularia species catch their preys through the repetition of an "active slow deflation / passive fast suction" sequence. In this paper, we propose a mechanical model that describes both phases and strongly supports the hypothesis that the trap door acts as a flexible valve that buckles under the combined effects of pressure forces and the mechanical stimulation of trigger hairs, and not as a panel articulated on hinges. This model combines two different approaches, namely (i) the description of thin membranes as triangle meshes with strain and curvature energy, and (ii) the molecular dynamics approach, which consists in computing the time evolution of the position of each vertex of the mesh according to Langevin equations. The only free parameter in the expression of the elastic energy is the Young's modulus E of the membranes. The values for this parameter are unequivocally obtained by requiring that the trap model fires, like real traps, when the pressure difference between the outside and the inside of the trap reaches about 15 kPa. Among other results, our simulations show that, for a pressure difference slightly larger than the critical one, the door buckles, slides on the threshold and finally swings wide open, in excellent agreement with the sequence observed in high-speed videos.Comment: Accepted for publication in Physical Review

    Spontaneous Firings of Carnivorous Aquatic Utricularia Traps: Temporal Patterns and Mechanical Oscillations

    Get PDF
    Aquatic species of Utricularia are carnivorous plants living in environments poor in nutrients. Their trapping mechanism has fascinated generations of scientists and is still debated today. It was reported recently that Utricularia traps can fire spontaneously. We show here that these spontaneous firings follow an unexpected diversity of temporal patterns, from “metronomic” traps which fire at fixed time intervals to “random” patterns, displaying more scattered firing times. Some “bursting” traps even combine both aspects, with groups of fast regular firings separated by a variable amount of time. We propose a physical model to understand these very particular behaviors, showing that a trap of Utricularia accomplishes mechanical oscillations, based on continuous pumping and sudden opening of the trap door (buckling). We isolate the key parameters governing these oscillations and discuss the effect of their fluctuations
    • …
    corecore